3.1.37 \(\int \frac {\sqrt {a x^2+b x^3+c x^4}}{x^6} \, dx\) [37]

3.1.37.1 Optimal result
3.1.37.2 Mathematica [A] (verified)
3.1.37.3 Rubi [A] (verified)
3.1.37.4 Maple [A] (verified)
3.1.37.5 Fricas [A] (verification not implemented)
3.1.37.6 Sympy [F]
3.1.37.7 Maxima [F]
3.1.37.8 Giac [F(-2)]
3.1.37.9 Mupad [F(-1)]

3.1.37.1 Optimal result

Integrand size = 24, antiderivative size = 205 \[ \int \frac {\sqrt {a x^2+b x^3+c x^4}}{x^6} \, dx=-\frac {\sqrt {a x^2+b x^3+c x^4}}{4 x^5}-\frac {b \sqrt {a x^2+b x^3+c x^4}}{24 a x^4}+\frac {\left (5 b^2-12 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{96 a^2 x^3}-\frac {b \left (15 b^2-52 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{192 a^3 x^2}+\frac {\left (b^2-4 a c\right ) \left (5 b^2-4 a c\right ) \text {arctanh}\left (\frac {x (2 a+b x)}{2 \sqrt {a} \sqrt {a x^2+b x^3+c x^4}}\right )}{128 a^{7/2}} \]

output
1/128*(-4*a*c+b^2)*(-4*a*c+5*b^2)*arctanh(1/2*x*(b*x+2*a)/a^(1/2)/(c*x^4+b 
*x^3+a*x^2)^(1/2))/a^(7/2)-1/4*(c*x^4+b*x^3+a*x^2)^(1/2)/x^5-1/24*b*(c*x^4 
+b*x^3+a*x^2)^(1/2)/a/x^4+1/96*(-12*a*c+5*b^2)*(c*x^4+b*x^3+a*x^2)^(1/2)/a 
^2/x^3-1/192*b*(-52*a*c+15*b^2)*(c*x^4+b*x^3+a*x^2)^(1/2)/a^3/x^2
 
3.1.37.2 Mathematica [A] (verified)

Time = 0.59 (sec) , antiderivative size = 159, normalized size of antiderivative = 0.78 \[ \int \frac {\sqrt {a x^2+b x^3+c x^4}}{x^6} \, dx=-\frac {\sqrt {x^2 (a+x (b+c x))} \left (\sqrt {a} \sqrt {a+x (b+c x)} \left (48 a^3+15 b^3 x^3+8 a^2 x (b+3 c x)-2 a b x^2 (5 b+26 c x)\right )+3 \left (5 b^4-24 a b^2 c+16 a^2 c^2\right ) x^4 \text {arctanh}\left (\frac {\sqrt {c} x-\sqrt {a+x (b+c x)}}{\sqrt {a}}\right )\right )}{192 a^{7/2} x^5 \sqrt {a+x (b+c x)}} \]

input
Integrate[Sqrt[a*x^2 + b*x^3 + c*x^4]/x^6,x]
 
output
-1/192*(Sqrt[x^2*(a + x*(b + c*x))]*(Sqrt[a]*Sqrt[a + x*(b + c*x)]*(48*a^3 
 + 15*b^3*x^3 + 8*a^2*x*(b + 3*c*x) - 2*a*b*x^2*(5*b + 26*c*x)) + 3*(5*b^4 
 - 24*a*b^2*c + 16*a^2*c^2)*x^4*ArcTanh[(Sqrt[c]*x - Sqrt[a + x*(b + c*x)] 
)/Sqrt[a]]))/(a^(7/2)*x^5*Sqrt[a + x*(b + c*x)])
 
3.1.37.3 Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.09, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {1967, 1998, 27, 1998, 27, 1998, 27, 1951, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a x^2+b x^3+c x^4}}{x^6} \, dx\)

\(\Big \downarrow \) 1967

\(\displaystyle \frac {1}{8} \int \frac {b+2 c x}{x^3 \sqrt {c x^4+b x^3+a x^2}}dx-\frac {\sqrt {a x^2+b x^3+c x^4}}{4 x^5}\)

\(\Big \downarrow \) 1998

\(\displaystyle \frac {1}{8} \left (-\frac {\int \frac {5 b^2+4 c x b-12 a c}{2 x^2 \sqrt {c x^4+b x^3+a x^2}}dx}{3 a}-\frac {b \sqrt {a x^2+b x^3+c x^4}}{3 a x^4}\right )-\frac {\sqrt {a x^2+b x^3+c x^4}}{4 x^5}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{8} \left (-\frac {\int \frac {5 b^2+4 c x b-12 a c}{x^2 \sqrt {c x^4+b x^3+a x^2}}dx}{6 a}-\frac {b \sqrt {a x^2+b x^3+c x^4}}{3 a x^4}\right )-\frac {\sqrt {a x^2+b x^3+c x^4}}{4 x^5}\)

\(\Big \downarrow \) 1998

\(\displaystyle \frac {1}{8} \left (-\frac {-\frac {\int \frac {b \left (15 b^2-52 a c\right )+2 c \left (5 b^2-12 a c\right ) x}{2 x \sqrt {c x^4+b x^3+a x^2}}dx}{2 a}-\frac {\left (5 b^2-12 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{2 a x^3}}{6 a}-\frac {b \sqrt {a x^2+b x^3+c x^4}}{3 a x^4}\right )-\frac {\sqrt {a x^2+b x^3+c x^4}}{4 x^5}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{8} \left (-\frac {-\frac {\int \frac {b \left (15 b^2-52 a c\right )+2 c \left (5 b^2-12 a c\right ) x}{x \sqrt {c x^4+b x^3+a x^2}}dx}{4 a}-\frac {\left (5 b^2-12 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{2 a x^3}}{6 a}-\frac {b \sqrt {a x^2+b x^3+c x^4}}{3 a x^4}\right )-\frac {\sqrt {a x^2+b x^3+c x^4}}{4 x^5}\)

\(\Big \downarrow \) 1998

\(\displaystyle \frac {1}{8} \left (-\frac {-\frac {-\frac {\int \frac {3 \left (b^2-4 a c\right ) \left (5 b^2-4 a c\right )}{2 \sqrt {c x^4+b x^3+a x^2}}dx}{a}-\frac {b \left (15 b^2-52 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{a x^2}}{4 a}-\frac {\left (5 b^2-12 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{2 a x^3}}{6 a}-\frac {b \sqrt {a x^2+b x^3+c x^4}}{3 a x^4}\right )-\frac {\sqrt {a x^2+b x^3+c x^4}}{4 x^5}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{8} \left (-\frac {-\frac {-\frac {3 \left (b^2-4 a c\right ) \left (5 b^2-4 a c\right ) \int \frac {1}{\sqrt {c x^4+b x^3+a x^2}}dx}{2 a}-\frac {b \left (15 b^2-52 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{a x^2}}{4 a}-\frac {\left (5 b^2-12 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{2 a x^3}}{6 a}-\frac {b \sqrt {a x^2+b x^3+c x^4}}{3 a x^4}\right )-\frac {\sqrt {a x^2+b x^3+c x^4}}{4 x^5}\)

\(\Big \downarrow \) 1951

\(\displaystyle \frac {1}{8} \left (-\frac {-\frac {\frac {3 \left (b^2-4 a c\right ) \left (5 b^2-4 a c\right ) \int \frac {1}{4 a-\frac {x^2 (2 a+b x)^2}{c x^4+b x^3+a x^2}}d\frac {x (2 a+b x)}{\sqrt {c x^4+b x^3+a x^2}}}{a}-\frac {b \left (15 b^2-52 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{a x^2}}{4 a}-\frac {\left (5 b^2-12 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{2 a x^3}}{6 a}-\frac {b \sqrt {a x^2+b x^3+c x^4}}{3 a x^4}\right )-\frac {\sqrt {a x^2+b x^3+c x^4}}{4 x^5}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{8} \left (-\frac {-\frac {\frac {3 \left (b^2-4 a c\right ) \left (5 b^2-4 a c\right ) \text {arctanh}\left (\frac {x (2 a+b x)}{2 \sqrt {a} \sqrt {a x^2+b x^3+c x^4}}\right )}{2 a^{3/2}}-\frac {b \left (15 b^2-52 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{a x^2}}{4 a}-\frac {\left (5 b^2-12 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{2 a x^3}}{6 a}-\frac {b \sqrt {a x^2+b x^3+c x^4}}{3 a x^4}\right )-\frac {\sqrt {a x^2+b x^3+c x^4}}{4 x^5}\)

input
Int[Sqrt[a*x^2 + b*x^3 + c*x^4]/x^6,x]
 
output
-1/4*Sqrt[a*x^2 + b*x^3 + c*x^4]/x^5 + (-1/3*(b*Sqrt[a*x^2 + b*x^3 + c*x^4 
])/(a*x^4) - (-1/2*((5*b^2 - 12*a*c)*Sqrt[a*x^2 + b*x^3 + c*x^4])/(a*x^3) 
- (-((b*(15*b^2 - 52*a*c)*Sqrt[a*x^2 + b*x^3 + c*x^4])/(a*x^2)) + (3*(b^2 
- 4*a*c)*(5*b^2 - 4*a*c)*ArcTanh[(x*(2*a + b*x))/(2*Sqrt[a]*Sqrt[a*x^2 + b 
*x^3 + c*x^4])])/(2*a^(3/2)))/(4*a))/(6*a))/8
 

3.1.37.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1951
Int[1/Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(r_.)], x_Symbol] : 
> Simp[-2/(n - 2)   Subst[Int[1/(4*a - x^2), x], x, x*((2*a + b*x^(n - 2))/ 
Sqrt[a*x^2 + b*x^n + c*x^r])], x] /; FreeQ[{a, b, c, n, r}, x] && EqQ[r, 2* 
n - 2] && PosQ[n - 2] && NeQ[b^2 - 4*a*c, 0]
 

rule 1967
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_ 
), x_Symbol] :> Simp[x^(m + 1)*((a*x^q + b*x^n + c*x^(2*n - q))^p/(m + p*q 
+ 1)), x] - Simp[(n - q)*(p/(m + p*q + 1))   Int[x^(m + n)*(b + 2*c*x^(n - 
q))*(a*x^q + b*x^n + c*x^(2*n - q))^(p - 1), x], x] /; FreeQ[{a, b, c}, x] 
&& EqQ[r, 2*n - q] && PosQ[n - q] &&  !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] & 
& IGtQ[n, 0] && GtQ[p, 0] && RationalQ[m, q] && LeQ[m + p*q + 1, -(n - q) + 
 1] && NeQ[m + p*q + 1, 0]
 

rule 1998
Int[(x_)^(m_.)*((c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.))^(p_ 
.)*((A_) + (B_.)*(x_)^(r_.)), x_Symbol] :> Simp[A*x^(m - q + 1)*((a*x^q + b 
*x^n + c*x^(2*n - q))^(p + 1)/(a*(m + p*q + 1))), x] + Simp[1/(a*(m + p*q + 
 1))   Int[x^(m + n - q)*Simp[a*B*(m + p*q + 1) - A*b*(m + p*q + (n - q)*(p 
 + 1) + 1) - A*c*(m + p*q + 2*(n - q)*(p + 1) + 1)*x^(n - q), x]*(a*x^q + b 
*x^n + c*x^(2*n - q))^p, x], x] /; FreeQ[{a, b, c, A, B}, x] && EqQ[r, n - 
q] && EqQ[j, 2*n - q] &&  !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] 
 && RationalQ[m, p, q] && ((GeQ[p, -1] && LtQ[p, 0]) || EqQ[m + p*q + (n - 
q)*(2*p + 1) + 1, 0]) && LeQ[m + p*q, -(n - q)] && NeQ[m + p*q + 1, 0]
 
3.1.37.4 Maple [A] (verified)

Time = 0.19 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.73

method result size
pseudoelliptic \(\frac {x^{4} \left (a c -\frac {5 b^{2}}{4}\right ) \left (a c -\frac {b^{2}}{4}\right ) \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x \sqrt {a}}\right )+\left (\frac {5 \left (\frac {26 c x}{5}+b \right ) x^{2} b \,a^{\frac {3}{2}}}{12}+\left (-c \,x^{2}-\frac {1}{3} b x \right ) a^{\frac {5}{2}}-\frac {5 \sqrt {a}\, b^{3} x^{3}}{8}-2 a^{\frac {7}{2}}\right ) \sqrt {c \,x^{2}+b x +a}-\ln \left (2\right ) x^{4} \left (a c -\frac {5 b^{2}}{4}\right ) \left (a c -\frac {b^{2}}{4}\right )}{8 a^{\frac {7}{2}} x^{4}}\) \(149\)
risch \(-\frac {\left (-52 a b c \,x^{3}+15 b^{3} x^{3}+24 a^{2} c \,x^{2}-10 a \,b^{2} x^{2}+8 a^{2} b x +48 a^{3}\right ) \sqrt {x^{2} \left (c \,x^{2}+b x +a \right )}}{192 x^{5} a^{3}}+\frac {\left (16 a^{2} c^{2}-24 a \,b^{2} c +5 b^{4}\right ) \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right ) \sqrt {x^{2} \left (c \,x^{2}+b x +a \right )}}{128 a^{\frac {7}{2}} x \sqrt {c \,x^{2}+b x +a}}\) \(159\)
default \(\frac {\sqrt {c \,x^{4}+b \,x^{3}+a \,x^{2}}\, \left (48 c^{2} a^{\frac {5}{2}} \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right ) x^{4}+24 c^{2} \sqrt {c \,x^{2}+b x +a}\, a b \,x^{5}-72 c \,a^{\frac {3}{2}} \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right ) b^{2} x^{4}-48 c^{2} \sqrt {c \,x^{2}+b x +a}\, a^{2} x^{4}-30 c \sqrt {c \,x^{2}+b x +a}\, b^{3} x^{5}-24 c \left (c \,x^{2}+b x +a \right )^{\frac {3}{2}} a b \,x^{3}+84 c \sqrt {c \,x^{2}+b x +a}\, a \,b^{2} x^{4}+15 \sqrt {a}\, \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right ) b^{4} x^{4}+48 c \left (c \,x^{2}+b x +a \right )^{\frac {3}{2}} a^{2} x^{2}+30 \left (c \,x^{2}+b x +a \right )^{\frac {3}{2}} b^{3} x^{3}-30 \sqrt {c \,x^{2}+b x +a}\, b^{4} x^{4}-60 \left (c \,x^{2}+b x +a \right )^{\frac {3}{2}} a \,b^{2} x^{2}+80 \left (c \,x^{2}+b x +a \right )^{\frac {3}{2}} a^{2} b x -96 \left (c \,x^{2}+b x +a \right )^{\frac {3}{2}} a^{3}\right )}{384 x^{5} \sqrt {c \,x^{2}+b x +a}\, a^{4}}\) \(387\)

input
int((c*x^4+b*x^3+a*x^2)^(1/2)/x^6,x,method=_RETURNVERBOSE)
 
output
1/8/a^(7/2)*(x^4*(a*c-5/4*b^2)*(a*c-1/4*b^2)*ln((2*a+b*x+2*a^(1/2)*(c*x^2+ 
b*x+a)^(1/2))/x/a^(1/2))+(5/12*(26/5*c*x+b)*x^2*b*a^(3/2)+(-c*x^2-1/3*b*x) 
*a^(5/2)-5/8*a^(1/2)*b^3*x^3-2*a^(7/2))*(c*x^2+b*x+a)^(1/2)-ln(2)*x^4*(a*c 
-5/4*b^2)*(a*c-1/4*b^2))/x^4
 
3.1.37.5 Fricas [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 336, normalized size of antiderivative = 1.64 \[ \int \frac {\sqrt {a x^2+b x^3+c x^4}}{x^6} \, dx=\left [\frac {3 \, {\left (5 \, b^{4} - 24 \, a b^{2} c + 16 \, a^{2} c^{2}\right )} \sqrt {a} x^{5} \log \left (-\frac {8 \, a b x^{2} + {\left (b^{2} + 4 \, a c\right )} x^{3} + 8 \, a^{2} x + 4 \, \sqrt {c x^{4} + b x^{3} + a x^{2}} {\left (b x + 2 \, a\right )} \sqrt {a}}{x^{3}}\right ) - 4 \, {\left (8 \, a^{3} b x + 48 \, a^{4} + {\left (15 \, a b^{3} - 52 \, a^{2} b c\right )} x^{3} - 2 \, {\left (5 \, a^{2} b^{2} - 12 \, a^{3} c\right )} x^{2}\right )} \sqrt {c x^{4} + b x^{3} + a x^{2}}}{768 \, a^{4} x^{5}}, -\frac {3 \, {\left (5 \, b^{4} - 24 \, a b^{2} c + 16 \, a^{2} c^{2}\right )} \sqrt {-a} x^{5} \arctan \left (\frac {\sqrt {c x^{4} + b x^{3} + a x^{2}} {\left (b x + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{3} + a b x^{2} + a^{2} x\right )}}\right ) + 2 \, {\left (8 \, a^{3} b x + 48 \, a^{4} + {\left (15 \, a b^{3} - 52 \, a^{2} b c\right )} x^{3} - 2 \, {\left (5 \, a^{2} b^{2} - 12 \, a^{3} c\right )} x^{2}\right )} \sqrt {c x^{4} + b x^{3} + a x^{2}}}{384 \, a^{4} x^{5}}\right ] \]

input
integrate((c*x^4+b*x^3+a*x^2)^(1/2)/x^6,x, algorithm="fricas")
 
output
[1/768*(3*(5*b^4 - 24*a*b^2*c + 16*a^2*c^2)*sqrt(a)*x^5*log(-(8*a*b*x^2 + 
(b^2 + 4*a*c)*x^3 + 8*a^2*x + 4*sqrt(c*x^4 + b*x^3 + a*x^2)*(b*x + 2*a)*sq 
rt(a))/x^3) - 4*(8*a^3*b*x + 48*a^4 + (15*a*b^3 - 52*a^2*b*c)*x^3 - 2*(5*a 
^2*b^2 - 12*a^3*c)*x^2)*sqrt(c*x^4 + b*x^3 + a*x^2))/(a^4*x^5), -1/384*(3* 
(5*b^4 - 24*a*b^2*c + 16*a^2*c^2)*sqrt(-a)*x^5*arctan(1/2*sqrt(c*x^4 + b*x 
^3 + a*x^2)*(b*x + 2*a)*sqrt(-a)/(a*c*x^3 + a*b*x^2 + a^2*x)) + 2*(8*a^3*b 
*x + 48*a^4 + (15*a*b^3 - 52*a^2*b*c)*x^3 - 2*(5*a^2*b^2 - 12*a^3*c)*x^2)* 
sqrt(c*x^4 + b*x^3 + a*x^2))/(a^4*x^5)]
 
3.1.37.6 Sympy [F]

\[ \int \frac {\sqrt {a x^2+b x^3+c x^4}}{x^6} \, dx=\int \frac {\sqrt {x^{2} \left (a + b x + c x^{2}\right )}}{x^{6}}\, dx \]

input
integrate((c*x**4+b*x**3+a*x**2)**(1/2)/x**6,x)
 
output
Integral(sqrt(x**2*(a + b*x + c*x**2))/x**6, x)
 
3.1.37.7 Maxima [F]

\[ \int \frac {\sqrt {a x^2+b x^3+c x^4}}{x^6} \, dx=\int { \frac {\sqrt {c x^{4} + b x^{3} + a x^{2}}}{x^{6}} \,d x } \]

input
integrate((c*x^4+b*x^3+a*x^2)^(1/2)/x^6,x, algorithm="maxima")
 
output
integrate(sqrt(c*x^4 + b*x^3 + a*x^2)/x^6, x)
 
3.1.37.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a x^2+b x^3+c x^4}}{x^6} \, dx=\text {Exception raised: TypeError} \]

input
integrate((c*x^4+b*x^3+a*x^2)^(1/2)/x^6,x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Not invertible Error: Bad Argument 
Value
 
3.1.37.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a x^2+b x^3+c x^4}}{x^6} \, dx=\int \frac {\sqrt {c\,x^4+b\,x^3+a\,x^2}}{x^6} \,d x \]

input
int((a*x^2 + b*x^3 + c*x^4)^(1/2)/x^6,x)
 
output
int((a*x^2 + b*x^3 + c*x^4)^(1/2)/x^6, x)